Search results for "Kinetic theory of gases"
showing 10 items of 14 documents
A Nonlinear Nonviscous Hydrodynamical Model for Change Transport Derived from Kinetic Theory
2002
In the paper, methods of Extended Thermodynamics are used to derive nonlinear closure relations for hydrodynamical models for charge transport in metals or in semiconductors, neglecting viscous phenomena. For the sake of simplicity only the case of single parabolic band approximation is studied. In this work the velocity v i is not considered as a small parameter; therefore, the models obtained can be useful when one wishes to study phenomena in a neighborhood of a stationary non-equilibrium process.
Thermalization in the initial stage of heavy ion collisions
2017
The high density non-abelian matter produced in heavy ion collisions is extremely anisotropic. Prethermal dynamics for the anisotropic and weakly coupled matter is discussed. Thermalization is realized with the effective kinetic theory in the leading order accuracy of the weakly coupled expansion. With the initial condition from color glass condensate, hydrodynamization time for the LHC energies is realized to be about 1 fm/c, while the thermalization happens much later than the hydrodynamization. peerReviewed
Weak and strong coupling equilibration in nonabelian gauge theories
2015
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of t…
Theory overview of Heavy Ion collisions
2016
This presentation discusses some recently active topics in the theoretical interpretation of high energy heavy ion collisions at the LHC and at RHIC. We argue that the standard paradigm for understanding the spacetime evolution of the bulk of the matter produced in the collision is provided by viscous relativistic hydrodynamics, which can be used to systematically extract properties of the QCD medium from experimental results. The initial conditions of this hydrodynamical evolution are increasingly well understood in terms of gluon saturation, and can be quantified using Classical Yang-Mills fields and QCD effective kinetic theory. Hard and electromagnetic probes of the plasma provide addit…
From the kinetic theory of active particles to the modeling of social behaviors and politics
2007
This paper deals with the modeling of complex social systems by methods of the mathematical kinetic theory for active particles. Specifically, a recent model by the last two authors is analyzed from the social sciences point of view. The model shows, despite its simplicity, some interesting features. In particular, this paper investigates the ability of the model to describe how a social politics and the disposable overall wealth may have a relevant influence towards the trend of the wealth distribution. The paper also outlines various research perspectives.
A Formal Passage From a System of Boltzmann Equations for Mixtures Towards a Vlasov-Euler System of Compressible Fluids
2019
A formal asymptotics leading from a system of Boltzmann equations for mixtures towards either Vlasov-Navier-Stokes or Vlasov-Stokes equations of incompressible fluids was established by the same authors and Etienne Bernard in: A Derivation of the Vlasov-Navier-Stokes Model for Aerosol Flows from Kinetic Theory Commun. Math. Sci., 15: 1703–1741 (2017) and A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures. KRM, 11: 43–69 (2018). With the same starting point but with a different scaling, we establish here a formal asymptotics leading to the Vlasov-Euler system of compressible fluids. Explicit formulas for the coupling terms are obtained i…
A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures
2016
In this short paper, we formally derive the thin spray equation for a steady Stokes gas, i.e. the equation consists in a coupling between a kinetic (Vlasov type) equation for the dispersed phase and a (steady) Stokes equation for the gas. Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard-Desvillettes-Golse-Ricci, arXiv:1608.00422 [math.AP]] where the evolution of the gas is governed by the Navier-Stokes equation.
Fluid dynamical response to initial state fluctuations
2014
Abstract We investigate a fluid dynamical response to the fluctuations and geometry of the initial state density profiles in ultrarelativistic heavy ion collisions.
Kinetic model for steady heat flow
1986
We construct a consistent solution of the Bhatnagar-Gross-Krook (BGK) model kinetic equation describing a system in a steady state with constant pressure and nonuniform temperature. The thermal profile is not linear and depends on the interaction potential. All the moments of the distribution function are given as polynomials in the local thermal gradient. In particular, the heat flux always obeys the (linear) Fourier law.
Solving the heat-flow problem with transient relativistic fluid dynamics
2014
Israel-Stewart theory is a causal, stable formulation of relativistic dissipative fluid dynamics. This theory has been shown to give a decent description of the dynamical behavior of a relativistic fluid in cases where shear stress becomes important. In principle, it should also be applicable to situations where heat flow becomes important. However, it has been shown that there are cases where Israel-Stewart theory cannot reproduce phenomena associated with heat flow. In this paper, we derive a relativistic dissipative fluid-dynamical theory from kinetic theory which provides a good description of all dissipative phenomena, including heat flow. We explicitly demonstrate this by comparing th…