Search results for "Kinetic theory of gases"

showing 10 items of 14 documents

A Nonlinear Nonviscous Hydrodynamical Model for Change Transport Derived from Kinetic Theory

2002

In the paper, methods of Extended Thermodynamics are used to derive nonlinear closure relations for hydrodynamical models for charge transport in metals or in semiconductors, neglecting viscous phenomena. For the sake of simplicity only the case of single parabolic band approximation is studied. In this work the velocity v i is not considered as a small parameter; therefore, the models obtained can be useful when one wishes to study phenomena in a neighborhood of a stationary non-equilibrium process.

PhysicsWork (thermodynamics)Nonlinear systemConstitutive theoryClassical mechanicsHeat fluxConstitutive equationKinetic theory of gasesClosure (topology)Charge (physics)Statistical physics
researchProduct

Thermalization in the initial stage of heavy ion collisions

2017

The high density non-abelian matter produced in heavy ion collisions is extremely anisotropic. Prethermal dynamics for the anisotropic and weakly coupled matter is discussed. Thermalization is realized with the effective kinetic theory in the leading order accuracy of the weakly coupled expansion. With the initial condition from color glass condensate, hydrodynamization time for the LHC energies is realized to be about 1 fm/c, while the thermalization happens much later than the hydrodynamization. peerReviewed

PhysicsthermalizationLarge Hadron Colliderta114010308 nuclear & particles physicsPhysicsQC1-999heavy ion collisionsHigh density01 natural sciences7. Clean energyColor-glass condensateNuclear physicsThermalisationChemical physics0103 physical sciencesKinetic theory of gasescolor glass condensatehydrodynamizationInitial value problemHeavy ion010306 general physicsAnisotropyQuark Confinement and the Hadron Spectrum
researchProduct

Weak and strong coupling equilibration in nonabelian gauge theories

2015

We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of t…

High Energy Physics - TheoryNuclear and High Energy Physicsquark-gluon plasmaNuclear TheoryeducationNuclear TheoryFOS: Physical sciences114 Physical sciencesperturbative QCD01 natural sciencesNuclear Theory (nucl-th)ViscosityHigh Energy Physics - Phenomenology (hep-ph)AdS-CFT correspondencePhase (matter)0103 physical sciencesGauge theoryNuclear Experiment010306 general physicsCouplingPhysicsta114010308 nuclear & particles physicsEntropy productionkvarkki-gluoniplasmaHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Flow (mathematics)Quantum electrodynamicsKinetic theory of gasesStrong couplingParticle Physics - Theoryholography and quark-gluon plasmasJournal of High Energy Physics
researchProduct

Theory overview of Heavy Ion collisions

2016

This presentation discusses some recently active topics in the theoretical interpretation of high energy heavy ion collisions at the LHC and at RHIC. We argue that the standard paradigm for understanding the spacetime evolution of the bulk of the matter produced in the collision is provided by viscous relativistic hydrodynamics, which can be used to systematically extract properties of the QCD medium from experimental results. The initial conditions of this hydrodynamical evolution are increasingly well understood in terms of gluon saturation, and can be quantified using Classical Yang-Mills fields and QCD effective kinetic theory. Hard and electromagnetic probes of the plasma provide addit…

Particle physicsNuclear Theorynucleus nucleusNuclear TheoryFOS: Physical sciencesNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)quantum chromodynamicsboundary conditionsYang-Millsheavy ionsNuclear ExperimentBrookhaven RHIC CollplasmaQuantum chromodynamicsPhysicsenergiaLarge Hadron ColliderSpacetimesaturationscatteringviskositeettiPlasmaCollisionGluonHigh Energy Physics - Phenomenologyelectromagneticsspace-timekineticsQuark–gluon plasmaKinetic theory of gasesp nucleushydrodynamiikka
researchProduct

From the kinetic theory of active particles to the modeling of social behaviors and politics

2007

This paper deals with the modeling of complex social systems by methods of the mathematical kinetic theory for active particles. Specifically, a recent model by the last two authors is analyzed from the social sciences point of view. The model shows, despite its simplicity, some interesting features. In particular, this paper investigates the ability of the model to describe how a social politics and the disposable overall wealth may have a relevant influence towards the trend of the wealth distribution. The paper also outlines various research perspectives.

Statistics and ProbabilityManagement scienceActive particlesmedia_common.quotation_subjectGeneral Social SciencesComplexitySocial systemsActive particlesPoliticsSocial systemKinetic theory of gasesWealth distributionSimplicitySociologyKinetic theoryNonlinearitySocial psychologySocial politicsSocial behaviormedia_commonQuality & Quantity
researchProduct

A Formal Passage From a System of Boltzmann Equations for Mixtures Towards a Vlasov-Euler System of Compressible Fluids

2019

A formal asymptotics leading from a system of Boltzmann equations for mixtures towards either Vlasov-Navier-Stokes or Vlasov-Stokes equations of incompressible fluids was established by the same authors and Etienne Bernard in: A Derivation of the Vlasov-Navier-Stokes Model for Aerosol Flows from Kinetic Theory Commun. Math. Sci., 15: 1703–1741 (2017) and A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures. KRM, 11: 43–69 (2018). With the same starting point but with a different scaling, we establish here a formal asymptotics leading to the Vlasov-Euler system of compressible fluids. Explicit formulas for the coupling terms are obtained i…

Mathematics::Analysis of PDEsBinary number01 natural sciencesCompressible flow010305 fluids & plasmasPhysics::Fluid DynamicsBoltzmann equationSpraysymbols.namesakeIncompressible flow0103 physical sciences0101 mathematicsScalingAerosolSettore MAT/07 - Fisica MatematicaMathematicsGas mixtureApplied MathematicsVlasov-Euler systemHard spheresEuler system010101 applied mathematicsClassical mechanicsBoltzmann constantsymbolsKinetic theory of gasesHydrodynamic limit
researchProduct

A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures

2016

In this short paper, we formally derive the thin spray equation for a steady Stokes gas, i.e. the equation consists in a coupling between a kinetic (Vlasov type) equation for the dispersed phase and a (steady) Stokes equation for the gas. Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard-Desvillettes-Golse-Ricci, arXiv:1608.00422 [math.AP]] where the evolution of the gas is governed by the Navier-Stokes equation.

Binary numberKinetic energy01 natural sciencesBoltzmann equationPhysics::Fluid Dynamics35Q20 35B25 82C40 76T15 76D07symbols.namesakeMathematics - Analysis of PDEshydrodynamic limitPhase (matter)FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP][PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]sprays0101 mathematicsSettore MAT/07 - Fisica MatematicaVlasov-Stokes systemPhysicsNumerical Analysisgas mixture.010102 general mathematicsMSC Primary: 35Q20 35B25; Secondary: 82C40 76T15 76D07.Stokes flowBoltzmann equationAerosol010101 applied mathematicsClassical mechanicsModeling and SimulationBoltzmann constantKinetic theory of gasessymbolsVlasov-Stokes system Boltzmann equation Hydrodynamic limit Aerosols Sprays Gas mixtureaerosolsAnalysis of PDEs (math.AP)
researchProduct

Fluid dynamical response to initial state fluctuations

2014

Abstract We investigate a fluid dynamical response to the fluctuations and geometry of the initial state density profiles in ultrarelativistic heavy ion collisions.

PhysicsNuclear reactionNuclear and High Energy Physicsta114Mathematical model010308 nuclear & particles physicsFluid mechanicsState (functional analysis)Mechanics01 natural sciencesClassical mechanicsFlow (mathematics)State density0103 physical sciencesKinetic theory of gasesHeavy ionNuclear Experiment010306 general physicsNuclear Physics A
researchProduct

Kinetic model for steady heat flow

1986

We construct a consistent solution of the Bhatnagar-Gross-Krook (BGK) model kinetic equation describing a system in a steady state with constant pressure and nonuniform temperature. The thermal profile is not linear and depends on the interaction potential. All the moments of the distribution function are given as polynomials in the local thermal gradient. In particular, the heat flux always obeys the (linear) Fourier law.

Physics::Fluid DynamicsPhysicsTemperature gradientSteady stateDistribution functionHeat fluxKinetic modelThermalTurbulence kinetic energyKinetic theory of gasesThermodynamicsMechanicsNonlinear Sciences::Cellular Automata and Lattice GasesPhysical Review A
researchProduct

Solving the heat-flow problem with transient relativistic fluid dynamics

2014

Israel-Stewart theory is a causal, stable formulation of relativistic dissipative fluid dynamics. This theory has been shown to give a decent description of the dynamical behavior of a relativistic fluid in cases where shear stress becomes important. In principle, it should also be applicable to situations where heat flow becomes important. However, it has been shown that there are cases where Israel-Stewart theory cannot reproduce phenomena associated with heat flow. In this paper, we derive a relativistic dissipative fluid-dynamical theory from kinetic theory which provides a good description of all dissipative phenomena, including heat flow. We explicitly demonstrate this by comparing th…

Physics::Fluid DynamicsPhysicsNuclear and High Energy Physicsta114Quark–gluon plasmaDynamics (mechanics)Fluid dynamicsKinetic theory of gasesDissipative systemShear stressMechanicsTransient (oscillation)Boltzmann equationPhysical Review D
researchProduct